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Abstract

Simulation of genomic data is one of the key tool in population genetics, yet, to date, there
is no forward-in-time simulator of bacterial populations that is both computationally efficient
and adaptable to a wide range of scenarios. Here we demonstrate how to simulate bacterial
populations with SLiM, a forward-in-time simulator built for eukaryotes. SLiM gained lots of
traction in the past years, and has exhaustive documentation showcasing the various scenarios
that are possible to simulate. This paper focuses on a simple demographic scenario, to explore
bacterial specificities and how it translates into SLiM’s language. To foster the development of
bacterial simulations with this recipe, we pedagogically walk the reader through the code. We
also validate the simulator, by testing extensively the results of the simulations against existing
simulators and theoretical expectations of some summary statistics. Finally, the combination
of this protocol with the flexibility and power of SLiM enables the community to simulate
efficiently bacterial populations under a wide range of evolutionary scenarios.

1 Introduction

Bacterial population genomics aims to reconstruct past evolutionary events and better understand
the ongoing evolutionary dynamics operating in present-day populations. Demographic changes,
selection, and migration are examples of processes whose genotypic imprints remain in present-
day populations. Trying to recover these signals from ever-growing sequencing data is a major
goal of population genomics. In the context of epidemiological surveillance the inference of
these types of events can be useful, since pathogens are known to undergo frequent demographic
changes [1]. Similarly, a better understanding of the evolutionary forces operating in pathogen
populations can help to inform public health-related decisions [2]. For instance, one can assess
the impact of a vaccination campaign or the efficacy of a new antibiotic on a given pathogen
population [3], [4]. Apart from clinical settings, bacterial population genomics can also be useful
to describe natural population diversity [5].

Simulations are essential to population genetics [6]. Many methods inferring past evolutionary
events rely on simulated data. In Approximate Bayesian Computation (ABC), likely the most
famous likelihood-free inference framework in our field, simulations enable to approximate the
posterior distribution of the parameters of interest [7]. Other methods, based on machine learning,
also require simulations to train a model to learn the mapping between the input sequence data
and evolutionary processes [8]. More and more machine learning methods involve deep learning
algorithms which appear to be very promising but require a large volume of simulated data to
train the models [9]–[13]. Simulations are also beneficial for testing and validating population
genetic methods (whether based on simulations or not), since they provide data generated by
known evolutionary forces (unlike, typically, empirical sequence data). Notably, they can be
used to assess the performance of methods when assumptions are violated [14], [15]. Finally,
simulations can be used to forecast the impact of an environmental change on a population, or
the expected response to population management [16], [17]

Despite these many applications of population genetics simulators, there are very few bacterial
population genetics simulators, and the existing ones do not cover many possible scenarios. Exist-
ing bacterial simulators are coalescent-based simulators (msPro [18], SimBac [19], FastSimBac [20]),
which means they are very fast and memory efficient, but can model only a narrow range of pos-
sible scenarios. For instance, these simulators do not allow the simulation of selective processes,
and in the case of SimBac, simulation of demographic changes is not implemented. Simulation
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of complex selective forces together with demographic processes remains a difficult problem
for coalescence-based simulators [19]. Other coalescent-based simulators that are not specific
to bacteria (e.g., ms [21], msprime [22]) suffer from the same constraints, and additionally most
cannot simulate bacterial recombination (similar to gene conversion). Forward simulators like
SFS CODE [23] can be used to produce more complex simulations with demography and selection;
however, this software seems to no longer be maintained, and suffers from poor performance [24].
Yet computational efficiency is a key factor for supervised methods trained on large simulated
datasets, such as ABC, machine learning, and deep learning approaches.

We present here a method for simulating bacterial populations using SLiM in a flexible and
fast way. SLiM is a forward simulator [25] that is becoming more and more powerful and widely
used [26]–[28]. SLiM includes a scriptable interface with its own language, Eidos, which allows
simulation of a wide range of possible scenarios. The detailed instruction manual, combined with
a helpful graphical user interface and SLiM’s flexibility, enable users to build simulation models
tailored to their research. Simulation of bacterial populations, and haploids in general, is not
supported intrinsically by SLiM, because every individual has two chromosomes. But because of
its scriptability, it is possible to extend SLiM into this area. In this protocol, we will show the key
functions necessary to perform bacterial simulations. Following the SLiM manual’s convention,
we will introduce the model implementation step by step together with the related concepts.
Then we will show that the simulator behaves correctly according to expected values of certain
summary statistics under the Wright-Fisher model, and that the model’s performance is good
enough to allow numerous simulations to be run in a reasonable amount of time and memory. We
believe this will open new avenues in bacterial population genetics, by allowing more researchers
to use simulation-based approaches in this field and go beyond the limitations of the coalescent.

2 Methods, simulator and data

The bacterial simulator proposed here is based on SLiM, a powerful and efficient forward genetic
simulator [29]. Thanks to its flexible interface and the Eidos language, we were able to adapt SLiM
to the simulation of bacterial populations.

SLiM provides two types of simulations: Wright-Fisher (WF) models, and models that go
beyond the Wright-Fisher framework (non-Wright-Fisher or nonWF models). The Wright-Fisher
model is based on many simplifying assumptions that are often not compatible with real scenarios
such as structured populations, overlapping generations, etc. [25]. However, it is mathematically
simple, allowing expectations for certain quantities to be estimated. This is particularly useful to
validate the created simulator against the expectations under this model. The nonWF framework,
on the other hand, is more individual-based, emergent, and realistic. It allows a greater breadth
of possible scenarios to be simulated, but we cannot derive expectations of the same quantities.
Thus, we will provide results for the same scenario under both models to confirm that they behave
similarly (according to the WF expectations).

We will present in the main text the protocol for simulating bacterial populations under the
nonWF model, since it is a more powerful framework on which other users can build more
complex scenarios. The corresponding annotated WF script is available in a public repository
(https://github.com/jeanrjc/BacterialSlimulations), along with the nonWF script detailed below.
To highlight the modeling steps that are specific to bacterial populations, we kept the underlying
population history simple, with a single constant-size population and no selection, but those
assumptions are trivial to relax in SLiM.

2.1 Key concepts and definitions

2.1.1 Horizontal gene transfer, recombination, and circularity

In bacteria, pieces of DNA can be exchanged between different organisms in a process called
horizontal gene transfer [30]. When received, such a DNA fragment can be inserted in the host
chromosome with the help of integrases, at a specific site or an arbitrary site, if the fragment is not
homologous to an existing chromosomal region. Alternatively, if the incoming DNA fragment is
homologous, it will integrate into the host chromosome by a mechanism similar to gene conversion
in eukaryotes [31]. This latter process is the bacterial recombination mechanism that we want to
implement. It differs from recombination of eukaryotes in that mutations are not exchanged
between two fragments of DNA; instead, the mutations are copied from one fragment to the other.
Coalescent simulators implementing gene conversion, such as ms [21] or FastSimBac [20], can
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be used to simulate relatively simple scenarios; however, they only model a linear chromosome,
whereas most bacteria have a circular chromosome. Thus, our implementation of gene conversion
provides a closer fit with reality, since we do model the bacterial chromosome as circular.

2.1.2 Burn-in

In certain situations, it is desirable to start a simulation with a population which is at mutation-
drift equilibrium. Reaching this equilibrium, called the ”burn-in” of the simulation, is expected
to take 5Ne generations, on average, for haploid populations. Because the effective size of
bacterial populations is usually larger than the time span of interest, reaching the equilibrium
with a forward simulator would require spending more than 80% of the overall simulation time
in the burn-in phase – and even then, there is no guarantee that the equilibrium will be reached.
To solve this issue, faster backward-in-time simulators can be used to simulate a population
at equilibrium that serves to initiate the forward simulation. In the WF model, we have to
simulate the entire population backward in time, and load the generated diversity into SLiM to
initialize our simulation. Because we simulate the entire population, it is not possible to use
gene conversion at a significant rate, otherwise ms crashes, thus there is no recombination in
burn-in. With the nonWF model, we combine the tree sequence recording feature along with the
recapitation feature of msprime [25]. After a forward simulation, there is often no single common
ancestor for the population at the end of the simulation; in other words, the tree of the underlying
population has not yet coalesced. The recapitation process will simulate, backward in time, the
addition of ancestral branches to produce coalescence. Because msprime does not implement yet
gene conversion, we cannot use bacterial recombination in burn-in. The recapitation process will
be detailed for bacterial populations. Currently, it is not possible to use the tree recording feature
with the WF model, because it cannot record to the tree sequence the fact that HGT is happening.
As of now, it is not possible to have gene conversion during burn-in, we analyse its impact on
simulation in the results section. It is important to recall that a simulation does not always start
with a burn-in phase, in which case this part is not needed.

2.1.3 Simulation rescaling

Forward simulators remain computationally intensive, and bacterial populations can be very
large. The effective population size of most bacterial species is on the order of 108

− 109 [32].
Depending on the task one wants to address, many thousands or even millions of simulations
may be required. One way to reduce the computational time is to parallelize the simulations on
a cluster, but it can still remain costly. Another way is to rescale the model parameters such that
θ = 2×Ne×µ and related quantities remain constant. For instance, we can decrease the size of the
population by a factor of 10 while increasing the mutation and recombination rates by the same
factor. The choice of the rescaling factor is at the discretion of the user, but one should keep in
mind that excessive rescaling might lead to spurious results [33]. For instance, rescaling increases
the rate of double mutation at a site, although it should remain rare [34]. Also, if the simulation
involves a bottleneck, the user should make sure that the number of individuals remaining in
the population after the bottleneck is not so small as to cause artifacts. With 1000 individuals, a
bottleneck that reduces the population size by a factor 10 would lead to very different results if
we were to rescale the model down to only 10 individuals before the bottleneck! The rescaling
factor must also be applied to the duration of the simulation (and the duration of different events
that might occur), so that the effects of drift remains similar. Thus, rescaled simulations not only
run faster per generation (because there are fewer individuals to process), but also for a smaller
number of generations. In the results section, we will show the effect of the rescaling factor on
two summary statistics, along with the increase in the speed of the model. Because there are
many complexities involved in rescaling, we recommend choosing this factor with great care, and
cross-validating the results of downstream analyses, by doing a small number of runs that are
unscaled (or less rescaled, at least).

2.2 Simulation protocol

2.2.1 Forward simulation

We now describe the protocol step by step. SLiM scripts are usually called from the command
line (if they are not run within the SLiMgui graphical modeling environment). For this reason,
we will set the values of constants that govern the model’s behavior with the -d constant=value
command-line option. Our model script can be called as follows:
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1 $ slim -d "N_generations=1000" -d "Ne=1e5" -d "genomeSize=2e6" -d "Rho=1e-9" -d "tractlen=1e4"
nonWF_bact.slim

Calling the SLiM script from bash

Using -d constant=value is convenient to start different simulations with different parameters.
In the example above, we simulate 1000 generations of a population of 100 000 individuals, which
have a chromosome of 2Mb, and a recombination rate of 10−9 recombinations per generation
per base pair, with a mean recombination tract length of 10kb. Here is the beginning of the
corresponding SLiM script:

1 initialize()
2 {
3 initializeSLiMModelType("nonWF");
4 initializeTreeSeq(); // record trees for recapitation and/or adding neutral mutations later
5 initializeMutationRate(0); // no neutral mutations in the forward simulation
6 initializeMutationType("m1", 1.0, "f", 0.0); // neutral (unused)
7 initializeGenomicElementType("g1", m1, 1.0);
8 initializeGenomicElement(g1, 0, genomeSize - 1);
9
10 initializeRecombinationRate(0); // In SLiM recombination is between sister chromatids
11 defineConstant("HGTrate", Rho * genomeSize); // HGT probability
12 }

Initialization of a bacterial simulation with SLiM

Here we initialize the simulation using the nonWF model with tree sequence recording, as
explained in the SLiM manual. We set the mutation rate to zero because we will add neutral
mutations later with msprime, after recapitation; we don’t want to forward-simulate neutral mu-
tations, for efficiency. Importantly for bacteria, the (generic) recombination process implemented
in SLiM should not happen, otherwise, because individuals in SLiM are diploids, our haploid
bacterial chromosomes will recombine with the empty second chromosomes. Thus, the recom-
bination rate should always be set to zero, when simulating bacterial populations. Instead, we
define another constant, HGTrate, that represents the probability of a given bacteria undergoing
(homologous) HGT.

The population is created at the beginning of the first generation, as shown in the next snippet;
other populations can be created here too:

13 1 early()
14 {
15 sim.addSubpop("p1", Ne);
16 sim.rescheduleScriptBlock(s1, start=N_generations , end=N_generations);
17 }

Creation of a population

In line 15, we add a subpopulation named p1 of size Ne. The next line is not specific to bacteria, but
allows us to define the end of the simulation dynamically, with a parameter (N generations) that
is given when calling this SLiM script with the -d option. This is useful when comparing different
re-scaling factors, or when the endpoint of the simulation should depend on other parameters or
events.

18 reproduction()
19 {
20 // each parental individual reproduces twice, with independent probabilities of HGT
21 parents = p1.individuals;
22
23 for (rep in 0:1)
24 {
25
26 if (HGTrate > 0)
27 {
28 // for all daughter cells, which ones are going to undergo a HGT?
29 is_HGT = rbinom(size(parents), 1, HGTrate);
30 }
31 else
32 {
33 is_HGT = integer(size(parents)); // vector of 0s
34 }
35 for (i in seqAlong(parents))
36 {
37 if (is_HGT[i])
38 {
39 // Pick another individual to receive a piece of DNA from
40 HGTsource = p1.sampleIndividuals(1, exclude=parents[i]).genome1;
41 // Choose which fragment
42 pos_beg = rdunif(1, 0, genomeSize - 1);
43 tractLength = rgeom(1, 1.0 / tractlen);
44 pos_end = pos_beg + tractLength - 1;
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45
46 // Prevent an edge case when both
47 // pos_beg and tractLength are equal to 0
48
49 if (pos_end == -1) {
50 pos_end = 1;
51 }
52 else
53 {
54 pos_end = integerMod(pos_beg + tractLength - 1, genomeSize);
55 }
56
57 // HGT from pos_beg forward to pos_end on a circular chromosome
58 if (pos_beg > pos_end)
59 breaks = c(0, pos_end, pos_beg);
60 else
61 breaks = c(pos_beg, pos_end);
62 subpop.addRecombinant(parents[i].genome1, HGTsource , breaks, NULL, NULL, NULL);
63 }
64 else
65 {
66 // no horizontal gene transfer; clonal replication
67 subpop.addRecombinant(parents[i].genome1, NULL, NULL, NULL, NULL, NULL);
68 }
69 }
70 }
71 // deactivate the reproduction() callback for this generation
72 self.active = 0;
73 }

Bacterial reproduction

In each generation, SLiM calls reproduction() callbacks for each individual and the callback
handles how that focal individual reproduces and generates offspring. Since we want to reproduce
the whole population in one big bang (for efficiency, mostly), we override that default behavior
by setting self.active = 0; at the end of the callback. As a result, this callback is called only
once per generation and will manage the reproduction of all individuals. We make each parent
reproduce twice (rep in 0:1) to circumvent SLiM’s constraint that individuals cannot undergo a
horizontal gene transfer event in the middle of their lifespan. By creating two clonal offspring, each
can be part of a horizontal gene transfer event; had we implemented a single clonal reproduction,
only one of the two daughter cells (the one that is not the parent) could have undergone HGT. Later
in the script the parents are removed from the population (by setting their fitness to 0), such that at
each generation, a bacterium reproduces, and generates two cells. For each of the two offspring, we
estimate which clones (size(parents)) will undergo an HGT event by drawing from a binomial
distribution, with the probability of HGT defined by the constant 11. If an individual was chosen
as a recipient for HGT, then the donor is picked randomly from the population (excluding the
recipient). The DNA fragment that is going to be transferred is now defined by a starting position,
drawn uniformly along the chromosome, and a length, whose value is drawn from a geometric
distribution with mean (tractlen), defined by the user. Then, the addRecombinant() call creates
a new daughter cell that is a clone of the parent, but with the recombination tract copied from the
donor to the recipient. If the individual was not an HGT recipient, it is simply defined as a clone
of its parent. Finally, as explained above, we deactivate this callback for the rest of the generation
since it has just reproduced every parent.

56 early()
57 {
58 inds = p1.individuals;
59 ages = inds.age;
60
61 // kill off parental individuals; biologically they don’t even exist,
62 // since they split by mitosis to generate their offspring
63 inds[ages > 0].fitnessScaling = 0.0;
64
65 // density-dependent population regulation on juveniles , toward Ne
66 juvenileCount = sum(ages == 0);
67 inds[ages == 0].fitnessScaling = Ne / juvenileCount;
68 }

Regulating the population size

As we saw earlier, we had to clone each individual (parent) twice, to produce two new
individuals (daughter cells/juveniles). To keep the simulation realistic we now remove the parents
by setting their fitness to 0. In order to simulate a demographic scenario of constant population
size, and because we are under the nonWF model where the size of the population is an emergent
property, and not a parameter as in WF models, we rescale the fitness of all juveniles so that the
average number of individuals at each generation remains Ne. Before the next generation, SLiM
will kill individuals based on their absolute fitness, which acts as a survival probability. Thus, at

5

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/


the start of the next generation we will have, on average, Ne individuals (with some stochastic
fluctuation around that average).

69 s1 10000 late()
70 {
71 sim.treeSeqOutput("mySimulation.trees");
72 sim. simu lationFinished();
73 }

Ending the simulation

This script block, named s1, was rescheduled by rescheduleScriptBlock() in line 16, but a
scheduled time for the block to execute – here 10 000 – has to be specified even though it will
be overridden with N generations. This is mandatory, otherwise this block will run in each
generation. The value just needs to be high enough to avoid unintended execution of the block
before it gets rescheduled; the time at which the unscaled simulation would end is typically a
good choice, since it will never be too early. When the simulation is over, we output the tree
sequence to a .trees file that we can work with in Python. In the next part we will show how to
generate a burn-in period and genetic diversity with msprime.

2.2.2 Recapitating and adding neutral mutations

To obtain a matrix of neutral SNPs – to compute summary statistics, for instance – the tree sequence
can be manipulated in msprime with the help of pyslim, a python interface between SLiM and
msprime.

1 ts = pyslim.load("mySimulation.trees")
2 ts_recap = ts.recapitate(recombination_rate=1e-20, # Crossing over recombination set to 0.
3 Ne=Ne)
4
5 # simplify to a subset of the population that is still alive
6 sample_inds = np.random.choice(ts_recap.individuals_alive_at(0),
7 size=sample_size ,
8 replace=False)
9 # get the first node of the sampled individuals to make them haploid
10 sample_nodes = [ts_recap.individual(i).nodes[0] for i in sample_inds]
11 ts_sampled_haploid = ts_recap. simp lify(samples=sample_nodes)
12
13 # Add neutral mutations
14 ts_mutated = pyslim.SlimTreeSequence(
15 msprime.mutate(ts_sampled_haploid ,
16 rate=mutation_rate/2, # To have 2.Ne.mu and not 4.Ne.mu
17 keep=True) # keep existing mutations
18 )
19
20
21 # Get the matrix of SNP, individuals in rows and SNP in columns.
22 snp_mat = ts_mutated.genotype_matrix().T
23
24 # get positions of the SNPs
25 pos = np.round(ts_mutated.tables.asdict()["sites"]["position"]).astype(int)

Recapitation and generation of SNPs with pyslim and msprime, in Python

First we load the tree sequence with pyslim, which returns an tree sequence object. We then
recapitate the branches that have not coalesced yet, with a very low recombination rate since
currently msprime does not implement gene conversion yet. We show that after a small number
of forward generations (relative to Ne) this has a negligible impact, notably the expected LD
is recovered (Supplementary Figures 10 and 9). Since, for this protocol, we want to generate
a matrix of SNPs for a sample of individuals, not for the whole population, we subsequently
sample a random subset of present-day individuals. We keep only the first node of each individual,
corresponding to the first chromosome in SLiM where our haploid genetic material resides. Finally,
we overlay neutral mutations on the tree sequence. We have to divide the mutation rate by two
to obtain the desired θ = 2 × Ne × µ, instead of θ = 4 × Ne × µ that is expected for diploids. At
the end, we get a matrix of SNPs and a vector of corresponding positions, often used as input for
inference methods [9], [12], [35].

2.3 Simulations performed

To test the simulator, we ran simulations with parameters of the bacteria Streptoccocus agalactiae
Clonal Complex 17, which is a major neonatal pathogen [36], [37]. We used a chromosome size
of 2Mb, and we estimated the following parameters based upon data we found in the literature.
The simulation spans 20,000 generations, which represents about 55 years of evolution for such
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bacteria in the wild, when using a generation time of 1 generation per day (as estimated for E.
coli [38]). The mutation rate is set to 1.53.10−9 mutations per base-pair per generation [36]. The
recombination rate was set equal to the mutation rate, and the mean recombination tract length
was estimated as 122 kb [39]. Note that the true recombination rate for S. agalactiae is probably
lower [40], but in order to assess the correctness of the implementation of bacterial recombination,
we chose to set it equal to the mutation rate and study the effects of varying it. The effective
population size of this clonal complex was estimated to be around 140 thousand individuals [36].
At the end of the simulation, we sample 20 individuals and build a matrix of SNPs, from which
we compute summary statistics.

Simulations were run on Dell server rack R640 with a processor Intel Xeon Silver 4112 2.6GHz.

3 Results

We performed two sets of experiments to assess the performance and accuracy of our simulator. In
a first experiment, we assessed the impact of rescaling the effective population size, Ne, in order to
speed up the computation time. In the second experiment, we analysed the impact of varying the
recombination rate and the mean recombination tract length, to better grasp their impact on the
simulations. For both experiments, we monitored the running time and peak memory usage of
SLiM, and assessed the quality of the simulations by comparing the site-frequency-spectrum (SFS)
and the linkage disequilibrium (LD) with simulations obtained using ms [21] and FastSimBac [20],
which are backward simulators implementing bacterial recombination (or gene conversion, in ms).

3.1 Impact of rescaling

We compared 9 different rescaling factors (RF): 1 (no rescaling), 2, 3, 4, 5, 10, 25, 50 and 100. For RF
above 2, we generated 100 replicates for each RF and each SLiM model (WF, nonWF); for RF of 1,
30 replicates were used, and for RF of 2, 50 replicates. We generated 300 replicates when running
FastSimBac (FSB) and ms.
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Figure 1: Distribution of the CPU time and memory peak usage for different rescaling factors. The
dashed line is the average time for FastSimBac (∼54s) and ms (∼14s). Note the log scale on the y
axis; 105 seconds is about 28 hours. Parameters used : chromosome size : 2Mb; µ = ρ = 1.53×10−9;
Ne = 140k; 20000 generations.

Without rescaling, the generation of a single replicate takes about a day (Figure 1). This is too
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long if one wants to run millions of simulations; however, it is possible to do a few such runs for
other purposes, such as confirming that rescaling did not introduce a bias when implementing a
new script. This might also be useful to test a method on a dataset produced without rescaling,
since even minor artifacts introduced by rescaling could conceivably bias or confuse inference
methods. When using a rescaling factor of 5, a simulation takes about 1 hour to run, which
is practicable if one wants to run thousands of simulations on a cluster. With a factor of 25 or
more, the running time is comparable to that of FastSimBac and ms, if not faster; FastSimBac
is a bit slower than ms, probably because we used the additional FastSimBac script to create an
ms-formatted output file. At 100 seconds or less per replicate, it is possible to generate about a
million replicates in few days or a week, on a typical computing cluster (using perhaps 100 cores).
The time of the burn-in period is included here, and is not a limiting factor since it is faster than the
forward-simulation period by about two orders of magnitude for rescaling factors smaller than 5
(supplementary Figure 7). The memory peak usage is fairly low (up to a few gigabytes without
rescaling), allowing any modern laptop to run these simulations.

Comparing WF and nonWF performance, we see that the nonWF model tends to be faster,
especially at higher rescaling factors. This is due to the overhead of the burn-in step, which is
slower in the WF models. Without rescaling, or at lower rescaling factors, the difference between
WF and nonWF running time tends to disappear. Interestingly, the variance in time and in memory
is less variable for the nonWF version, which can be useful to better predict the resources needed
for large runs. It is important to note that these performance metrics depend on the parameter
values used (such as the recombination rate).

We then computed the normalized SFS produced by the different rescaling factors. The SFS
represents the distribution of the frequency of derived alleles. Each bin (i) is given by iξi/θ̂, where
ξi is the count of SNPs having i derived alleles, and θ̂ is an estimator of θ computed as the mean
over the different bins (1/n

∑
iξi). Because iξi is an estimator of θ, the expected normalized SFS for

a constant size neutral population under the Wright-Fisher model is a flat line centered on 1 [41],
[42].
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Figure 2: Normalized Site Frequency Spectrum (SFS) for different rescaling factors. The shaded
area represents the standard deviation. The black lines represent the expected standard deviation.
Parameters used : chromosome size : 2Mb; µ = ρ = 1.53 × 10−9; Ne = 140k; 20000 generations.

Figure 2 shows the normalized SFS for 6 rescaling factors (see supplementary figure 2 for all
RF) with the expected standard deviation under the Wright-Fisher model without recombina-
tion [41]. FastSimBac and ms simulations are here as a second control in addition to the theoretical
expectations (horizontal line at 1).

We see that all experiments leads to the expected SFS, well within the expected standard
deviation for linked loci. A lower standard deviation is expected, as recombination is known to
decrease the variance of the SFS [43]. Thus, rescaling factors up to 100 with this set of parameters
do not affect the SFS, which behaves correctly for WF and nonWF models.
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Next, we assessed the impact of recombination on linkage disequilibrium (LD). The LD is
measured by r2, which quantifies how much correlation (or linkage) there is between two alleles
with a given distance between them. We measured this correlation by subsampling pairs of SNPs,
in 19 bins of increasing distances. The LD is represented as a function of the mean distance
within each bin. We compared to the LD obtained with simulations from FastSimBac and ms. In
figure 3 we observe that the LD for WF and nonWF are similar to those obtained with ms and
FastSimBac, and does not seem to be affected by the rescaling factor. Unlike for the SFS, the
expected LD and expected variation are much harder to obtain and are out of the scope of this
paper. However, we know that the LD at very short distance should be close to the LD obtained in
absence of recombination. In figure 3, we represented the range of LD without recombination at
short distance, with the shaded gray area. More precisely, it shows the highest and lowest values
of mean plus or minus standard error of the mean, respectively, of the four simulators without
recombination. The full LD without recombination can be seen in supplementary figures 10 and
11. There might exist however a small difference between backward and forward simulators as
the backward ones tend to produce higher LD at short distance than the forward ones. It might be
due to different implementation of recombination at short distance, or to the lack of recombination
in the burn-in part. Overall, we show that all types of simulations produce expected LD at short
distances and converges toward the expected r2 with free recombination of 1/n (dashed line) [44],
[45].
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Figure 3: Linkage disequilibrium for WF and nonWF simulations and for ms and FSB, with
different rescaling factor (RF). The horizontal dash line is the expected r2 with free recombination
when sampling 20 individuals (1/20). The colored shaded area represents the standard error of the
mean, and the gray area represents the range of expected value at very short distances. Parameters
used : chromosome size : 2Mb; µ = ρ = 1.53 × 10−9; Ne = 140k; 20000 generations.

Overall, rescaling the simulations up to a factor of one hundred produces the expected SFS
and LD, while allowing a drastic reduction in time and memory. This opens the possibility of
running many simulations in a small amount of time, allowing the power and flexibility of forward
simulation to be leveraged much more usefully in bacterial population genomics.

3.2 Impact of recombination

In this section we assess the impact of recombination with the same set of parameters used
previously, with a rescaling factor of 25 across all forthcoming runs. We compare simulations
under three recombination rates (ρ/10, ρ and 10ρ, where ρ = 1.53 × 10−9) and three mean tract
lengths (λ/100, λ/10, λ, where λ = 122 kb). First looking at performance, the run time increases
18-fold when the recombination rate increases by a factor of 100 for the WF simulations, while
for the same recombination increase, the run time increases by only about 3-fold for the nonWF
simulations (Figure 4 top). However, higher recombination rates require more memory when
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using the nonWF model, but still an affordable amount for a modern laptop (less than 1 GB,
Figure 4 bottom) with the rescaling factor used in this experiment.
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Figure 4: Distribution of the CPU time and memory peak usage for different recombination
rates (ρ) and mean recombination tract lengths (λ). Parameters used : chromosome size : 2Mb;
µ = 1.53 × 10−9; Ne = 140k; 30000 generations; RF=25.

The recombination rate thus has an important impact on the run time of the WF simulations,
but has much less impact on the nonWF simulations. The size of the recombination tract does
not seem to significantly affect either the run time or the memory usage. As expected, coalescent
simulators are very fast with a low recombination rate, but struggle with a higher recombination
rate [20]. It takes them up to 10 thousand times longer to run when increasing the recombination
rate by a factor of 100. Because of this, the simulations with ms and FastSimBac with 10ρ and λ
were too slow, so we could only run 6 and 7 replicates, respectively, instead of a hundred.

As in the previous experiment, we analysed the behaviour of our simulations with respect
to the normalized SFS and the LD. In figure 5, we see that the SFS is distributed as expected
(flat line centered at 1), independently of the simulator or type of simulation. Interestingly, we
observed two expected theoretical results. The standard deviation of the simulated SFS at low
recombination matches expectation [41], and the variance decreases as the recombination rate
increases [43]. We see that for a given recombination rate, decreasing the recombination tract
length has a similar effect as decreasing the recombination rate for a given tract length (moving
between figure panels leftward is similar to moving between figure panels upward).

In figure 6 the decay of LD with distance is similar when comparing all four types of simula-
tions. We observe the same pattern between coalescent and SLiM simulations as we saw earlier,
but only for a subset of the parameters. At low recombination rate, we recover the clonal frame,
corresponding to the fact that bacterial recombination involves small patches of homologous
DNA, rather than long stretches [46]. It means that positions on either side of that patch will stay
linked, and this explains the space between the line of the expected LD with free recombination
and the LD curve at high distance, which is expected in bacteria [31]. A higher recombination rate
or a longer recombination tract length tends to approximate the expected LD of an organism with
recombination by crossing over rather than HGT.
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Figure 6: Linkage disequilibrium for WF and nonWF simulations with various recombination
rates (ρ) and tract lengths (λ). The colored shaded area represents the standard error of the mean,
and the gray area represents the range of expected value at very short distances. The horizontal
black dash line is the expected r2 with free recombination when sampling 20 individuals (1/20).
Parameters used : chromosome size = 2Mb; µ = ρ = 1.53 × 10−9; λ = 122kb; Ne = 140k; 30000
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Overall, changing the recombination rate and mean recombination tract length produced the
expected statistical results. Even for the highest recombination rate, the run time and memory
requirements are still low enough to allow many simulations to be run (Figure 4), and if neces-
sary, one might increase the rescaling factor (with proper validation and testing). Interestingly,
with a high recombination rate the rescaled SLiM simulations were much faster than coalescent
simulations. Finally, the nonWF model seems to have a more predictable run time and memory
footprint, which might be beneficial when computing resources are scarce.

4 Discussion

We presented here a step-by-step protocol for performing simulations of a simple bacterial popu-
lation. Although SLiM is not focused on bacteria, the simulations were shown to behave correctly,
and could run in a reasonable amount of time. The models presented here were simple to draw
attention of the specific details involving in simulating bacterial populations, but all of the model
variation discussed in the SLiM manual – complex demography and population structure, selec-
tion, and so forth – could easily be added to this foundational model. This simplified approach
also allowed us to compare the accuracy of our implementation to theoretical expectations, and to
other simulators for which substantially more complex scenarios would not have been possible.

These simulations were made both within the Wright-Fisher framework and within the more
individual-based nonWF framework, to showcase these two possibilities for the user. The recipes
for these WF and nonWF models are freely available on GitHub (https://github.com/jeanrjc/BacterialSlimulations),
where we encourage everyone to propose their recipes for more complex scenarios. It might be
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worth mentioning why one would choose a WF or nonWF model in SLiM, since this fundamental
choice will guide much of the model development that follows. The WF model is simpler in
many ways: it involves more simplifying assumptions and less individual-level behavior. For
example, population size in the WF model is automatically maintained at a set level, whereas
the nonWF model requires you to write script that regulates the population size via mechanisms
such as density-dependence or – appropriately for pathogens, perhaps – host mortality. Simi-
larly, reproduction in the WF model is automatic, based upon fitness; high-fitness individuals
reproduce more than low-fitness individuals, a fact that SLiM automatically enforces, whereas in
nonWF models fitness typically influences mortality, not fecundity, and reproduction is explicitly
scripted to allow for greater individual-level variation in the modes and mechanisms of offspring
generation. Writing a nonWF model is therefore a bit more complex and technical, and requires
more details to be spelled out explicitly. Normally, nonWF models are slower, but here the slower
implementation of the burn-in in WF models due to the impossibility to use the tree-recording
feature with bacterial recombination meant that the WF models were slower. This is, in part, why
we emphasized the nonWF model here; in this context, it really provides both greater power and
flexibility, and better performance. However, the WF model remains simpler, conceptually and in
its implementation; and if one wants fitness to affect fecundity rather than mortality it can be the
more natural choice.

Currently, the only drawback of this simulator concerns the burn-in step which lacks recombi-
nation, due to technical limitation for ms and due to lack of gene conversion in msprime yet. The
implementation of gene conversion in msprime is an on-going work and may be available soon
and will greatly improve the overall model. This lack of recombination in burn-in leads to a lack
of LD when running a forward simulation not long enough. We see that starting from 20 000
forward generations (about Ne/7 generations), LD and SFS matches that of ms and FastSimBac
(supplementary Figure 9 and Figure 10). If one wants to run a very short simulation and require
burn-in, it might be worth running at least Ne/7 generations, as long as msprime does not imple-
ment gene conversion. The higher variance of the SFS observed in the experiments of the SLiM
simulations compared to ms and FastSimBacmight be explained by this lack of recombination in
burn-in since recombination decreases SFS’s variance [43]. Importantly, burn-in is not mandatory
as the simulation can involve only the forward part. However, when needed, a few steps of
forward generations are enough to recover the correct LD.

We hope that our work here will stimulate a wave of development of simulation-based models
for bacterial population genetics. We believe that this paper, combined with the hundred-plus
models presented in SLiM’s extensive documentation, will allow anyone to create new scenarios
for bacterial populations seamlessly. It is possible to simulate evolution in continuous space (such
as in a Petri dish), to model nucleotides explicitly (including the use of FASTA and VCF files),
to model selection based on external environmental factors such as the presence of antibiotics
(and selection for resistance genes), and even to model within-host evolution using a single
subpopulations for each host while modeling between-host transmission and infectivity dynamics;
with the scriptability of SLiM almost anything is possible. We look forward to seeing the diverse
research questions that the bacterial genomics community will explore with SLiM.
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Figure 7: Computing time as in Figure 1, but split between burn-in and forward parts
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Figure 8: Computing time for different number of forward generations with three different re-
combination rates. Ne=140 000, λ = 12200bp and RF=25
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Figure 9: Normalized Site Frequency Spectrum (SFS) for different number of forward generations
and recombination rates. The shaded area represents the standard deviation. The black lines
represent the expected standard deviation. Ne=140 000, λ = 12200bp and RF=25
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Figure 10: Linkage disequilibrium for WF and nonWF simulations with various number of forward
generations and recombination rates (ρ). Ne=140 000, λ = 12200bp and RF=25. The horizontal
dash line is the expected r2 with free recombination when sampling 20 individuals (1/20). The
shaded area represents the standard error of the mean, the standard deviation is 10 times larger
(since we have 100 samples), see figure below.
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Figure 11: Same Figure as supplementary figure 10, but representing standard deviation instead
of standard error of the mean.
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