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This paper presents a new approach for template-based analysis of anatomical variability in populations,
in the framework of Large Deformation Diffeomorphic Metric Mappings and mathematical currents. We
propose a fast approach in which the template is computed using an diffeomorphic iterative centroid
method. Statistical analysis is then performed on the initial momenta that define the deformations
between the centroid and each individual subject. We applied the approach to study the variability of
the hippocampus in 134 patients with Alzheimer’s disease (AD) and 160 elderly control subjects. We
show that this approach can describe the main modes of variability of the two populations and can predict
the performance to a memory test in AD patients.
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1. Introduction

Computational Anatomy aims at developing tools for the quantitative analysis of variability of
anatomical structures, and its variation in healthy and pathological cases (Grenander & Miller
1998). A common approach in Computational Anatomy is template-based analysis, where the ob-
jective is to compare anatomical objects variations with respect to a common template. These
variations are analysed using the ambient space deformations that match each individual structure
to the template. The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework (Beg
et al. 2005) has been widely used for the study of the geometric variation of human anatomy. This
framework generates metrics between deformable shapes and provides smooth and non ambigu-
ous matchings between objects. Statistical shape analysis is widely used to study the anatomical
variability of a population (Vaillant et al. 2004; Durrleman et al. 2008), or to study the correla-
tions between anatomical structures and cognitive or genetic parameters, and this framework also
provides interpretable statistics on a population.

Estimating a template from the population in the LDDMM framework, to be used for further
template-based statistical analysis, is a computationally expensive task. Several methods have been
proposed. Vaillant et al. (2004) proposed a method based on geodesic shooting which iteratively
updates a shape by shooting towards the mean directions. The method proposed by Glaunès & Joshi
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(2006) starts from the whole population and estimates a template by co-registering all subjects
using a backward scheme. A different approach was proposed in Durrleman et al. (2008, 2012). The
method initializes the template with a standard shape, and uses a forward scheme: deformations
are defined from the template to the subjects. The method presented by Ma et al. (2008) uses an
hyper template which is an extra fixed shape, and optimizes at the same time deformations from the
hyper template to the template and deformations from the template to subjects of the population.
All these methods are expensive in terms of computation time, due to the number of iterations
needed for the convergence of the method.

In this paper, we propose a fast approach for template-based statistical analysis of anatomical
variability in the LDDMM framework. The template is estimated using an iterative approach which
quickly provides a centroid of the population (Cury et al. 2013, 2014b). This method iteratively
computes a centroid of the population in the LDDMM framework, which requires only N − 1
matching steps, with N the number of subjects, while template estimation methods typically require
N such steps per iteration. Then the deformations from the centroid to the subjects of the population
are analysed using principal component analysis (PCA), and the resulting shape parameters are used
to predict clinical variables using multiple linear regression. The approach was applied to analyse
the shape of the hippocampus from a dataset of 134 patients with Alzheimer’s Disease (AD) and
160 controls. All the subjects are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. Hippocampi were segmented from T1-weighted Magnetic Resonance Images (MRI) and
then converted to 3D meshes. This paper extends work that was presented at the MIUA 2014
conference (Cury et al. 2014a). It includes a more detailed description of mathematical approaches
as well as new experiments, on a larger dataset, that assess the ability of the method to describe
group variability and to predict clinical variables.

2. Methods

2.1 LDDMM framework

We briefly present the LDDMM framework to introduce notations, for more details see Beg et al.
(2005). Deformation maps ϕ : R3 → R

3 are generated via integration of time-dependent vector
fields v(x, t), x ∈ R

3, t ∈ [0, 1], such that each v(·, t) belongs to a Reproducing Kernel Hilbert Space
V with kernel KV . The transport equation

{

dφv

dt
(x, t) = v(φv(x, t), t) ∀t ∈ [0, 1]

φv(x, 0) = x ∀x ∈ R
3

(1)

has a unique solution, and one sets ϕv = φv(·, 1) the diffeomorphism induced by v(x, t). In
a discrete setting, optimal vector fields v(x, t) are expressed as combinations of spline fields:
v(x, t) =

∑n
p=1KV (x, xp(t))αp(t), where xp(t) = φv(xp, t) are the trajectories of control points

xp (the vertices of the mesh to be deformed), and αp(t) ∈ R
3 are time-dependent vectors called

momentum vectors. Optimal trajectories between shapes can be shown to satisfy geodesic equa-
tions for a metric on the set of control points (Vaillant et al. 2004). As a result the full deformation
between a template shape and its surface target Si is encoded by the vector of initial momentum
vectors α

i(0) = (αi
p(0))1≤p≤ni

located on the vertices of the template mesh (or at an initial posi-
tion xi(0). As a consequence, these initial momentum vectors encode all information of the optimal
diffeomorphism between two surfaces. This is a very important point, specifically for group studies,
since it allows to analyse the set of deformation maps from a given template to the observed shapes
by performing statistics on the initial momentum vectors located on the template shape. We also
can use geodesic shooting from initial conditions (xi(0), αi(0)) in order to generate any arbitrary
deformation of a shape in the space of shapes.
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2.2 Currents framework

Shapes are represented using the framework of currents introduced in Computational Anatomy by
Vaillant & Glaunès (2005) and Glaunès (2005) and subsequently developed by Durrleman (2010).
The idea of currents is to characterize a shape by the collection of the real numbers given in
equation 2 for all possible vector fields w. Currents provide a dissimilarity measure between meshes
which does not assume point-to-point correspondence between anatomical structures. The approach
proposed by Vaillant & Glaunès (2005) is to represent meshes as objects in a linear space and supply
it with a computable norm. Using currents to describe surfaces has some benefits. First it avoids the
point correspondence issue : one does not need to define pairs of corresponding points between two
surfaces to evaluate their spatial proximity. Moreover, metrics on currents are robust to different
samplings (i.e. meshes, since surfaces are discretized to be represented via meshes) and topologies
and take into account not only the global shapes but also their local orientations. Another important
benefit is that the space of currents is a vector space, which allows to consider linear combinations
such as means of shapes in the space of currents. Any smooth vector field w of R3 can be integrated
over a surface S via the rule:

[S](w) =

∫

S

〈w(x) , n(x) 〉 dσS(x), (2)

with n(x) the unit normal vector to the surface, dσS the Lebesgue measure on the surface S. [S] is
called a 2-current associated to S.

We define a Hilbert metric 〈 · , · 〉W on the space of vector fields of R3 and require that the Hilbert
space W to be smooth enough (i.e. continuously embedded in C1

0 (R
3,R3)). W ∗ is the dual space i.e.

the space of continuous linear forms on W to R
3. The Riesz representation theorem, states that there

exists a unique u ∈ W such that for all w ∈ W , 〈u , w 〉W = δαx (w) = 〈w(x) , α 〉. u is thus a vector
field which depends on x and linearly on α, and we write it u = KW (·, x)α. KW (x, y) is a 3×3 matrix,
and KW : R3 × R

3 → R
3×3 the mapping called the reproducing kernel of the space W . Thus we

have the rule 〈KW (·, x)α,w〉W = 〈w(x) , α 〉.Applying this formula to w = KW (·, y)β for any other

point y ∈ R
3 and vector β ∈ R

3, we get 〈KW (·, x)α,KW (·, y)β〉W = αTKW (x, y)β =
〈

δαx , δβy
〉

W ∗

with δαx : w 7→ 〈w(x) , α 〉 ∈ W ∗

One can then prove that for two surfaces S and T :

〈 [S] , [T ] 〉W ∗ =

∫

S

∫

T

〈nS(x) , KW (x, y)nT (y) 〉 dσS(x)dσT (y). (3)

We can now define, the optimal matching between two currents [S] and [T ], which is the diffeomor-
phism minimizing the functional

JS,T (v) = γE(v) + ‖[ϕv(S)]− [T ]‖2W ∗ (4)

with E(v)=
∫ 1
0 ‖v(·, t)‖2V dt the regularisation term and γ the weighting between the two terms, in

practice for the Iterative Centroid method we used very small values for gamma. This functional
is non convex and in practice we use a gradient descent algorithm to perform the optimization.

2.3 Iterative Centroid method

Now we have the possibility to match a surface onto an other one to determine the deformation
needed to bring the first one onto the other one. We then build a template which is representative
of the population, and that will be the cornerstone of the subsequent statistical analysis. Here the
template is computed via a diffeomorphic Iterative Centroid method which we previously intro-
duced (Cury et al. 2014b). We proposed three different schemes for centroid computation, but here
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we only use the first one, which is the faster one. The method computes a centroid between two
surfaces S1 and S2 by transporting a first surface S1 along the geodesic flow computed by matching
(see equation 4) this surface to S2. The transport is stopped depending on the iteration number. At
the beginning, we have C1 = S1, so the initial centroid C1, represents one surface. To add S2 to the
centroid, we have to match C1 on S2: the transport is stopped at time 1/(1+ 1). C2 is the result of
this transport and is the centroid of 2 surfaces (S1 and S2). We iterate the process by transporting
C2 along the geodesic going to S3, so we stopped the transport at time 1/(2+ 1) to obtain C3. The
Iterated Centroid method consists in applying the following procedure (Algorithm 1).

Data: N surfaces Si

Result: 1 surface CN representing the centroid of the population
C1 = S1;
for i from 1 to N − 1 do

Ci is matched to Si+1 which results in a deformation map φvi(x, t);

Set Ci+1 = φvi(Ci,
1

i+1) which means we transport Ci along the geodesic and stop at time

t = 1
i+1 ;

end

Algorithm 1: Iterative Centroid algorithm

This algorithm can be defined in a pure Riemannian setting, for the averaging of a set of points pk
(instead of shapes Si) on a Riemannian manifold M . If points pk belong to a vector space and the
metric is flat, the algorithm converges towards the mean 1

N

∑

k pk, but in general it depends on the
ordering of the points. Back to our shape space framework, we showed in a previous study (Cury
et al. 2014b, 2013) that indeed the ordering changes the final centroid, but quantitative evaluations
show that the different results are very close to each other. Emery & Mokobodzki (1991) proposed
to define the centroid not as a unique point but as the set CN of points p ∈ M satisfying f(p) ≤
1
N

∑N
k=1 f(pk), for any convex function f on M (a convex function f on M being defined by the

property that its restriction to all geodesics is convex). This set CN takes into account all centroids
obtained by bringing together points pk by all possible means, i.e. recursively by pairs, or by
iteratively adding a new point, as we are doing with Algorithm 1.

For both kernels, the kernel of the space of deformation KV and the kernel of the space of currents
KW , we used Cauchy kernels i.e. kernels of the form KW (x, y) = h(‖x− y‖2/σ2

W )I3, where h is the
real function h(r) = 1/(1 + r). The parameters, which main ones are the sizes of both kernels have
to be adapted to the size of the data: the kernel KV has to be enough large to capture all subjects
of the population, here we used for these data σV = 13, and the kernel KW has to be smaller to
capture local differences between shapes, the optimal match between two surfaces are computed
using a multi scale approach using decreasing values of σW , here the smallest value was σW = 3. To
further reduce the computational load, we used a GPU implementation for the kernel convolutions
involved in the matchings.

2.4 Principal Component Analysis

For the statistical analysis of shapes, we compute a centroid of the population, and we use it
as a template. Then we deform the centroid toward each shape of the population to obtain the
deformations from the centroid to the population. The deformations are determined by the vector
of initial momentum vectors αi(0). We can analyse these deformations with a Principal Component
Analysis (PCA) on the initial momentum vectors as in Vaillant et al. (2004). However, unlike in
standard PCA, the covariance matrix computation needs to include the kernel KV of the space of
deformation V :

Cov(i, j) =
1

N − 1
(αi(0)− ᾱ(0))KV (x)(α

j(0)− ᾱ(0)), (5)
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with ᾱ(0) the mean of initial momentum vectors and KV (x) the matrix of the KV (x
i,xj). The

k-th principal mode is computed from the k-th eigenvector νk of CV , as follows:

m
k = ᾱ+

N
∑

j=1

νkj (α
j − ᾱ). (6)

The cumulative explained variance CEVk for the k first principal modes is given by equation:

CEVk =

∑k
h=1 λh

∑N
h=1 λh

, (7)

with λh the h-th largest eigenvalue corresponding to the h-th principal eigenvector νh. We can use
geodesic shootings along any principal mode m

k to visualise the corresponding deformations.

2.5 Multiple linear regression

From the space computed via the PCA, by using the z-scored p principal eigenvectors X1,i, ...,Xp,i

with i ∈ {1, . . . , N} of the N subjects, we can use multiple linear regression to predict a biological
or clinical factor Y . The multiple linear regression model is written as f(X) = β0 +

∑p
i=1Xiβi

where β0, β1, ...βp are the regression coefficients. The standard method to estimate the regression
coefficients is the least squares estimation method in which the coefficients βi minimize the residual
sum of squares RSS(β) =

∑N
j=1(yj − β0 −

∑p
i=1 xjiβi)

2, which leads to the estimated β̂ (with

matrix notations) β̂ = (XTX)−1XTY (Hastie et al. 2009). For each dimension p we validated the
quality of the computed model with the adjusted coefficient of determination R2

adj , which expresses
the part of explained variance of the model with respect to the total variance:

R2
adj = 1−

SSE/(N − p)

SST/(N − 1)
(8)

with SSE =
∑N

i (yi − (XT
1...p,iβ̂))

2 and SST =
∑N

i=1(yi − Ȳ )2. The R2
adj coefficient, unlike the

R2, takes into account the number of variables and therefore does not increase with the number of
variables. We then tested the significance of each model by computing the F statistic

F =
R2/p

(1−R2)/(N − p− 1)
(9)

which follows a F-distribution with (p, n−p−1) degrees of freedom. So for each number of variables
(i.e. dimensions) we computed the coefficient of determination to evaluate the model and the p-
value to evaluate the significance of the model. Then we used a leave-one-out cross validation
which consists in computing N models with N − 1 observations to predict the remaining one. To
quantify the prediction of the model, we computed the mean square error MSE = SSE/N which
corresponds to the unexplained residual variance.

3. Experiments and results

3.1 Dataset and experiments

The method was applied to the analysis of hippocampal shapes of 134 patients with Alzheimer’s
Disease (AD, with age = 75.8±7.3 years, 50% male, MMSE = 23 in average between 18 and 27) and

5



January 27, 2015 Computer Methods in Biomechanics and Biomedical Engineering CMBBE_cury_sub

160 controls (CN, with age = 76.0 ± 5.4 years, 47% male, MMSE=29 in average, between 25 and
30) (N = 294 in total) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 1.
Left hippocampi were automatically segmented with the SACHA software (Chupin et al. 2009)
from 3D T1 weighted MRI. Briefly, this method is fully automatic and is based on competitive
region growing with anatomical constraints. Then the meshes were computed using a marching
cube method implemented in the BrainVisa software (http://www.brainvisa.info). Hippocampal
meshes are composed of 800 vertices on average. Examples of meshes with 686 and 1059 vertices
are shown on Figure 1.

Figure 1. Examples of hippocampal meshes
computed from an AD patient (left) and from
a CN subject (right). the left mesh is composed
by 686 vertices and the right is composed by
1059 vertices.

For this dataset, we first analysed the variability of
both patients and control groups using Principal Com-
ponent Analysis. Then, for the AD group, we assessed the
aptitude of our approach to predict clinical parameters.
Specifically, we studied the Mini Mental State Examina-
tion (MMSE) which is a global indicator of the severity of
cognitive impairment, and the ADNI-MEM score (Crane
et al. 2012) which is composite score reflecting the per-
formance of the subject on MEMory tasks. The average
ADNI-MEM score for AD group is −0.88 and for the CN
group is 0.98.

We hypothesise that hippocampal shape predicts the
ADNI-MEM score, reflecting the central role of the hip-
pocampus in memory performance. On the other hand, we
hypothesise that it will not predict the MMSE which is a
global indicator.

3.2 Results: analysis of variability

Figure 2. Distances between IC(CN) and the deformation of IC(CN) onto IC(AD). On the left, the hippocampus is viewed
from below.

We computed a centroid for each of the two populations (AD and CN) using Algorithm 1. The
two centroids are denoted IC(AD) and IC(CN). Computation times were 2.4 hours for IC(AD)
and 3.6 hours for IC(CN). To assess whether the centroids are close to the center of the respective

populations, we computed the ratio R =
‖ 1

N

∑
N

i=1
v0(Si)‖V

1

N

∑
N

i=1
‖v0(Si)‖V

between the mean of the norms of initial

vector fields from the centroid to the population and the norm of the mean of initial vector fields.
Both ratios are 0.25, which means that both centroids are correctly centred even though they are not
exactly at the Fréchet mean (which would correspond to R = 0). To visualise differences between

1(adni.loni.usc.edu). The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and University
of California - San Francisco. The investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report A complete listing of ADNI investigators can be found
at: adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. Data collection and sharing for
this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01
AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012).
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Figure 3. First mode of deformation of the AD group (top) and of the CN group (bottom). For each row, the centroid is in the
center (in blue), on the right its deformation at +2σ1m

1, and at −2σ1m
1 on the left. The colormap indicates the displacement

of each vertex between the corresponding centroid and its deformation.

Figure 4. Two principal axes of the whole population (in green), the length of each axis is proportional to its standard deviation.
In blue, the projections of IC(CN) and projections of its deformations at ±2σ in the direction of its first mode of variation.
In red, for the AD group.

IC(CN) and IC(AD), we computed distances between vertices of IC(CN) and the deformation
of IC(CN) onto IC(AD) (figure 2).

We then analysed the variability of the AD and the CN populations using PCA. Figure 3 shows,
for each group, the principal mode of variation. This figure is obtained by geodesic shooting from
each centroid in the first principal direction with a magnitude of ±2σ1, with σ1 the standard
deviation of the first mode of variation. One can note that, while the templates of the two groups
are different, the variabilities of both groups share similarities. Nevertheless, there seems to be less
variability in the medial part of the body for the CN group.

In order to visualize the localization of IC(CN) and IC(AD) and the corresponding first modes
within the whole population, we computed a centroid of the whole population and performed
a PCA. We then projected IC(CN) and IC(AD) and their corresponding ±2σ1m

1 onto the 2D
space spanned by the first two principal components of the whole dataset. We can observe (figure 4)
that IC(CN) is on the right of the global centroid, and IC(AD) is on the other side, and the 3
principal modes of variation have different directions. One can observe that for the AD and the CN
group, the two shapes corresponding to the +2σ1m

1 deformation (on the right of the figure 4) are
close i.e. similar to each others. This observation can also be note on the figure 3, which shows that
the deformation in the direction −2σ1 for the AD group is very different than the one of the CN
group and the deformation in the direction +2σ1 for the AD group is similar to the one of the CN
group.

We then studied the variance associated to the different dimensions. In total, the AD group
have more variance than the CN group:

∑NAD

i=1 λAD
i = 233 and

∑NCN

i=1 λCN
i = 171. The first two

components of the AD group have a variance of respectively 51.4 and 21.2, while the two first
components of the CN group have a smaller variance of respectively 19.0 and 8.3. We also studied the
proportion of cumulative variance CEVk explained for each number of dimensions k. On Figure 5, we
can see that the AD group needs less dimensions (or principal components), around 40 dimensions,
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Figure 5. Results of proportion of cumulative variance explained regarding to the number of dimension computed by PCA.
Red line for the AD group, ’-.-’ blue line for the CN group and dotted green line for the whole population.

to explain 90% of its total variance than the CN group (requiring around 60 dimensions). To
make sure that this difference is not due to the larger number of subjects in the CN group, we
also performed the same experiment with the same number of subjects (134) in each group, and
obtained similar results.

Figure 6 shows these two first modes of variations in blue for the CN group and in red for the AD
group computed by geodesic shooting in the directions (k1 ×m

1; k2 ×m
2) with k1 ∈ [−2σ1; +2σ1]

and k2 ∈ [−2σ2; +2σ2],with m
1 and m

2 the two first modes of variations of the population, and σi
the standard deviation of the corresponding mode m

i. We can see that for the two groups, the first
mode mainly captures the volume effect which effect is clearly (and expected to be) more important
for the AD group, and also captures the curvature of the hippocampus tail. The second axis of the
AD group captures the atrophy of the hippocampus body and head.

3.3 Results: prediction of clinical variables

For the AD group we tested the ability of different models computed using different number of
variables to predict clinical variables (MMSE and ADNI-MEM). The variables of the models are
the principal modes of variation i.e. principal components of the PCA computed from the PCA. The
response Y is the response to the ADNI-MEM test or to the MMSE test. We saw in the previous
section that the AD group can express 90% of its total variability by using only 40 dimensions, thus
we studied models with maximum 50 principal modes of variation.

Figure 7 shows, for the hippocampi of the AD group, the values of R2
adj coefficient computed

from the models computed with the k first modes of variations, then the corresponding p-values are
displayed. We cross validated the models with the best R2

adj coefficients and the best p-values with
the lower number of dimensions. Thus, for the cross validation step we assessed models from 29
dimensions to 40 dimensions which seems to be the more interesting. For these model, R2

adj = 0.25
on average, and the p-values are 1.2e−3 on average. Results of cross validation using leave-one-out
(LOOCV) are assessed using the MSE score (right panel of the Figure 7). MSE scores of the
predicted values from the cross validation step are compared to the MSE of the model, and to a
random prediction distributed normally with mean Ȳ and variance σ2

Y .
None of the models (even those computed using more than 50 variables) was able to predict the

response to the MMSE test, the maximum value for the R2
adj coefficient was 0.11, and the p-values

were all higher than 0.1.

4. Conclusion

In this paper, we proposed a fast template-based shape analysis approach using the LDDMM frame-
work. We estimated the template using a diffeomorphic iterative centroid method. The Iterative

8



January 27, 2015 Computer Methods in Biomechanics and Biomedical Engineering CMBBE_cury_sub

Figure 6. Geodesic shootings in the directions of (k1 ×m
1; k2 ×m

2) with k1 ∈ [−2σ1; +2σ1] and k2 ∈ [−2σ2; +2σ2] with m
1

and m
2 the two first modes of variations for the AD group (in red) and the CN group (in blues). Principal axis (k1 ×m

1; 0)
and (0; k2 ×m

2) are in yellow for the AD group and in light blue for the CN group.

Figure 7. Multiple linear regression on principal components for the Y response ADNI MEM, and variables are the principal
modes of variations. On left panels, R2

adj
coefficients regarding to the number of dimensions (i.e. viariables) of the model. On

middle panels, the corresponding p-values of the models with dotted red lines representing the thresholds 0.05 and 0.01. On
right panels, the different MSE computed from some model previously selected using the two previous panels in which the
corresponding models are highlighted in green.

Centroid is roughly centred within the population of shapes. Analysis of variability was then based
on a PCA on the initial momentum vectors from the template to the subjects. In a future work we
will study the impact of different centroids of a population on the subsequent PCA. Projection of
the templates of the CN group and the AD group onto the main modes of variability of the whole
population show that they are located on the main axis of variability. The analysis of the number of
dimensions given by the PCA shows that, even if the AD group is more variable than the CN group,
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the AD group is explained by fewer dimensions than the CN group. Our experiments also showed
that the approach can be used to predict clinical variables from hippocampal shape. Specifically,
we were able to predict memory performances in AD patients, which is consistent with the central
role played by the hippocampus in memory processes.
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